Before we get into quantum physics, let’s understand the classical view of light. As early as 100 C.E., Ptolemy—a Roman citizen of Egypt—studied the properties of light, including reflection, refraction, and color. His work is considered the foundation of the field of optics. Ptolemy was intrigued by the way that light bends as it passes from air into water. Just drop a pencil into a glass of water and see for yourself!
As shown in Figure 1a, the pencil half under the water looks bent: light from the submerged part of the stick changes direction as it reaches the surface, creating the illusion of the bent stick. This effect is known as refraction, and the angle at which the light bends depends on a property of a material known as its refractive index.
Figure 1 Refraction of light: (a) A pencil dipped in water appears distorted because refraction causes light to bend when it passes from one substance into another, in this case from air to water. (b) A laser pointer clearly demonstrates Snell’s law of diffraction.
In the 1600s, Dutch mathematician Willebrord Snellius figured out that the degree of refraction depends on the ratio of the two materials’ different refractive indices. Most materials have a refractive index greater than 1, which means that as light enters the material from air, the angle of the ray in the material will become closer to perpendicular to the surface than it was before it entered. This is known as Snell’s Law, which states that the ratio of the sines of the angles of incidence and refraction (θ1, θ 2) is equal to the inverse ratio of the indices of refraction (n1 n2):
Try it out yourself with a small laser pointer! As shown in Figure 1b, partially fill a small aquarium with water. Disperse some milk in the water to make it a bit cloudy, which will make the laser beam visible. Use smoke from a smoldering match or candle to make the laser beam visible in the air above.
Measure the angles between the rays and a line perpendicular to the water surface. The refraction coefficient for water is approximately n2 = 1.333, and for air is more or less n2 = 1. Do your measurements match Snell’s Law?
Leave a Reply