One critical component of the industrial ecology paradigm is dematerialization. Dematerialization means using less material to make products that perform the same function as predecessors. Sometimes this means smaller or lighter products, but other aspects can include increasing the lifetime of a product or its efficiency. The net effect is a reduction in overall resource extraction. Dematerialization is thus a way to increase the percentage of active materials embodied in durables, and to reduce the percentage that is left as waste residuals.

However, dematerialization has limits in achieving Zero Emissions. We may also need to think of rematerialization – products that may or may not have a lighter weight in their final form, but whose production, use, and subsequent conversion or recyclability fits within the Zero Emissions paradigm. This is demonstrated by the ease and benefit of recycling older model cars versus the newer ones. Nonetheless, economists and engineers point out that optimizing for environmental protection alone means some loss in safety, efficiency, durability, convenience, attractiveness, and price.

Graph of price ($/lb) versus dilution (1/mass fraction) displaying a positive slope line for Sherwood plot, with scattered solid square markers labeled Se, Pb, Be, Zn, Hg, Cu, Cr, Ba, Cd, Ni, Sb, As, V, Ag, and TI.
Figure 1.7 Metals‐specific Sherwood plot for waste streams: minimum concentration of metal wastes undergoing recycling versus metal prices.Source: From Johnson et al. (2007). American Chemical Society.
Graph displaying a positive slope line with 11 scattered solid circle markers labeled Oxygen, Mined sulfur, Copper, Penicillin, Sulfur from stack gas, Bromine from sea water, Magnesium from sea water, etc.
Figure 1.8 A Sherwood diagram showing the correlation between the selling price of materials and their degree of dilution in the matrix from which they are separated.

Investment Recovery

During the transition to Zero Emissions, another early need will be for companies to fill the “decomposer niche,” a term for a specialized form of recycling developed by Raymond Cote at Dalhousie University in Ottawa (1995). Just as decomposer organisms turn dead animals and vegetable matter into forms that can become food for other animals and plants, decomposer niche companies will “consume” otherwise unusable wastes by processing them into usable feedstock or disassembling equipment and marketing reusable components and materials.

The work of decomposers also can be visualized as investment recovery. Taking a systematic approach to ending waste, investment recovery is a traditional service, according to Cote, “an integrated business process that identified, for redeployment, recycling, or remarketing, nonproductive assets generated in the normal course of business.” These assets include idle, obsolete, unused, or inoperable equipment, machinery, or facilities; excess raw materials, operating inventories, and supplies; construction debris; equipment and fixtures in facilities scheduled for demolition; off‐grade, out of specification, or discontinued products; and process waste (Cote 19952003).

The goal of investment recovery is to develop strategies and procedures to recapture the highest value from all surplus assets in a company or community. It seeks to reduce operating and disposal costs, prevent disposal of assets as waste, and find markets for redistributing the by‐products for increased economic value. One of the operating paradigms for an investment recovery firm would be integration of its functions into a comprehensive strategy for an eco‐industrial park. Firms that specialize in this work base their fees on a retainer plus a percent of savings and/or revenues if there is an incentive.


Comments

Leave a Reply

Your email address will not be published. Required fields are marked *