Centroid of Semicircular-Section of a Disc

Considering a semicircle of radius R as shown in Figure 11.10. Due to symmetry centroid must lie on y-axis. Let its distance from the x-axis be equation. To find equation, consider an element at a distance r from the centre O of the semicircle, radial width dr, and bound by radii at θ and θ + dθ.

Figure 11.10

Figure 11.10 Centroid of Circular Section of a Disc

Area of the element = rdθ dr.

Its moment about x-axis is given by,

 

rdθ × dr × r sin θ = r2 sin θ dr dθ

 

Total moment of area about x-axis,

equation

Thus, the centroid lies on y-axis at a distance of equation from the diametric axis.


Comments

Leave a Reply

Your email address will not be published. Required fields are marked *