Author: haroonkhan
-
Fixed-wing aircraft structures
Figure 3.2 shows the main structural components in a modern military aircraft, which are the fuselage, wings, empennage, landing gear and control surfaces such as flaps, elevators and ailerons. Aircraft structures must be lightweight and structurally efficient, and this is achieved by the combination of optimised design and high-performance materials. Many major aircraft sections, including the fuselage,…
-
Introduction
It is not possible to fully understand the topic of aerospace materials without also understanding the aerospace structures in which they are used. The choice of aerospace materials is governed by the design, function, loads and environmental service conditions of the structure. Understanding aircraft structures allows aerospace engineers to select the most appropriate material. The…
-
Future advances in aerospace materials
The future success of the aerospace industry both in terms of the cost-effective manufacture of new aircraft and the cost-effective extension of the operating life of existing aircraft is reliant on on-going improvements to existing materials and the development of new materials. Advances in materials technology is classified as evolutionary or revolutionary. Evolutionary advances mean…
-
Materials for the global aerospace industry
On-going advances in materials technology are essential to the success of the aerospace industry in the design, construction and in-service operation of aircraft. The aerospace industry is broadly defined as an industry network that designs, builds and provides in-service support to aircraft, helicopters, guided missiles, space vehicles, aircraft engines, and related parts. The industry includes…
-
Brief history of aerospace materials
Wood The era of aerospace materials arguably started with the first powered flight of Kitty Hawk by Orville and Wilbur Wright. The principal criterion used in the selection of materials for the first generation of aircraft (1903–1930) was maximum strength for minimum weight. Every other consideration in materials selection, including stiffness, toughness and durability, were secondary compared…
-
Introduction
The development of new materials and better utilisation of existing materials has been central to the advancement of aerospace engineering. Advances in the structural performance, safety, fuel economy, speed, range and operating life of aircraft has been reliant on improvements to the airframe and engine materials. Aircraft materials have changed greatly in terms of mechanical…
-
What makes for a good aerospace material?
Selecting the best material for an aircraft structure or engine component is an important task for the aerospace engineer. The success or failure of any new aircraft is partly dependent on using the most suitable materials. The cost, flight performance, safety, operating life and environmental impact from engine emissions of aircraft is dependent on the…
-
Introducing the main types of aerospace materials
An extraordinarily large number and wide variety of materials are available to aerospace engineers to construct aircraft. It is estimated that there are more than 120 000 materials from which an aerospace engineer can choose the materials for the airframe and engine. This includes many types of metals (over 65 000), plastics (over 15 000),…
-
Understanding aerospace materials
Advanced materials have an important role in improving the structural efficiency of aircraft and the propulsion efficiency of jet engines. The properties of materials that are important to aircraft include their physical properties (e.g. density), mechanical properties (e.g. stiffness, strength and toughness), chemical properties (e.g. corrosion and oxidation), thermal properties (e.g. heat capacity, thermal conductivity)…
-
The Importance of Aerospace Materials
The importance of materials science and technology in aerospace engineering cannot be overstated. The materials used in airframe structures and in jet engine components are critical to the successful design, construction, certification, operation and maintenance of aircraft. Materials have an impact through the entire life cycle of aircraft, from the initial design phase through to…